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PREFACE

This Miscellaneous Paper is the result of a request from the Geotechni-
cal Branch, Engineering and Construction Directorate, Office of the Chief of
Engineers, to the Geotechnical Laboratory (GL), US Army Engineer Waterways
Experiment Station (WES), to prepare a short report summarizing the major
aspects of radon generation, emanation, and escape in crystalline rocks (par-
ticularly granites and their metamorphic equivalents).

The report was prepared during Fiscal Year 1987 by Dr. Christopher P.
Cameron, Associate Professor of Geology, University of Southern Mississippi.
General supervision was provided by Dr. D. C. Banks, Chief, Engineering Geol-
ogy and Rock Mechanics Division, GL; and Dr. W. F. Marcuson III, Chief, GL.

COL Allen F. Grum, USA, was the previous Director of WES. COL Dwayne G.
Lee, CE, is the present Commander and Director. Dr. Robert W. Whalin is Tech-
nical Director.
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be given to:

a.

A REVIEW OF RADON EMANATION AND MOBILIZATION
IN MINERALS AND ROCKS

INTRODUCTION

Background

1. Increased US Army Corps of Engineers (CE) involvement in site char-
acterization and construction of underground facilities in crystalline rock

situated at considerable depths may require that some study and consideration

The possibility that anomalous accumulations of radioactive
uranium and thorium minerals might be discovered during the
excavation phase of the project; particularly 1f the facility is
to be sited in ancient granites which make up substantial por-
tions of the interior continental shield nucleii. For example,
we know that major accumulations of uranium and thorium minerals
(substantial tonnages with average grades in the 500 - 6000 ppm
range) appear to occur preferentially near the unconformities
separating (1), Archean granitoids and lower Proterozoic
metasedimentary sequences and (2), intruded lower Proterozoic
metasedimentary sequences and middle Proterozoic sequences.

Some late Precambrian granites (especially some alaskites) have
extensive pegmatitic phases which (in some cases) are rich in
radioactive minerals.

Occupational risk and environmental protection with respect to
possible anomalous occurrences of radioactive minerals which
could provide increased dosages of radon gas (a possible cause
of lung cancer) to personnel involved in the excavation, con-
struction, and occupation of such facilities., It is pertinent
to note that radon dosage in all habitations has become a topic
of high interest and has been the subject of several recent
meetings and short courses on a national level.

Methods and techniques of radon detection and monitoring includ-
ing prediction of potential accumulations of radicactive min-
erals and daughter products during the exploration phase of site
characterization,

Remedial and preventive methods to inhibit radon gas accumula-
tion in confined underground spaces. These methods might be
integrated with others employed to minimize occupational risk
resulting from the need to blast, transport, crush, and hoist
large tonnages of rock In large mined spaces, and for personnel
to occupy those spaces. These operations create the need for
fresh air ventilation to clear away dust, blasting gases, diesel
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engine emissions and other fumes, all of which can adsorb radon
gases if the latter is present in appreciable amounts.

2. Radon is found everywhere on earth, in the atmosphere, hydrosphere,
lithosphere, and biosphere. The radon emanation characteristics of rocks,
soils, and minerals are of special interest to audiences interested in the way
radon circulates in the lithosphere, the way this circulation affects the nat-
ural radiation environment in general, and environmental surveillance in par-
ticular. The concentration of airborne radioactivity can become high in the
confined spaces of any underground excavation which encounters anomalous
accumulations of radicactive minerals and/or daughter products of the natural
uranium and thorium decay series. Epidemiological studies conducted over the
past three decades by the Public Health Service in the United States have
indicated that uranium miners have a higher incidence of lung cancer than the
general population. These studies have also indicated that the radiation dose
from the daughter products of Radon 222 (218 Po, 214 Pb, 214 Bi, 214 Po), as
one of the causes of lung cancer. Hence the need for enhanced awareness with
respect to the radiation environment of deep mined facilities; particularly in

geological settings prone to anomalous accumulations of radioactive minerals.

Objectives

3. The objectives of this report are to:

a. Briefly summarize basic principles and hypotheses which describe
radon emanation, mobilization, and escape from naturally occur-
ring radioactive minerals of uranium and thorium.

b. Outline the health hazards related in inhalation of excessive
amounts of radon gas.

c. Describe those areas where knowledge of the low-level under-
ground radiation is incomplete or missing altogether and applied
research 1is indicated.

Scope §=;5

Engineering and Construction Directorate, Office of the Chief of Engi-

--\9'
- '-
4. This report is the result of a request from the Geotechnical Branch, 3§&ﬁ%
NG
r. '..

neers (OCE), to prepare a report summarizing the major aspects of radon gen-

eration, emanation and escape in crystalline rocks (particularly granites and

s
5

their metamorphic equivalents). The scope of this report will include a
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discussion of the basic princinles governing the naturally occurring radio- St
active decay of uranium and thorium, as well as brief comments concerning the A
controls on anomalous accumulations of the radioactive minerals. Radon emana- . 2

tion and escape mechanisms and the effect of temperature variations are dis-

cussed as are health hazards associated with inhalation of excessive amounts \*b':

&,
"
of radon. Common radon detection and monitoring systems are outlined. The ) j

report concludes with general recommendations regarding further studies and

~
»
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applied research.
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BASIC PRINCIPLES

N

5. Radon (Rn), element 86 in the Periodic Table is the heaviest member

L)
<
s

of the rare gas group (Group 0). Like other members of this group, radon is

P

an inert gas and thus does not enter into chemical combination with other ele-
ments in nature. There are three isotopes of radon: Rn-222, Rn-220 (some-
times called Thoron), and Rn-219 (sometimes called Actinon). These isotopes
are daughter products of the three radioactive decay series Uranium-238
(U-238), Thorium-232 (Th-232), and Uranium-235 (U-235) respectively. Because
U-235 has a low abundance in nature (0.7 percent of natural U) the contribu-
tion of Actinon to the natural radiation environment is minimal and will not

be discussed further.

The Natural Radiation Environment

6. The majority of natural radiation from non-cosmic sources originates
from the decay series outlined above and from the Potassium-40 decay series.

These decay series are shown schematically in Figure 1 (from Saum and Link,

1969). The numbers between adjacent blocks are the half-lives of the isotopes
in the decay series. For example, 4.5 billion years (Y) between uranium-238
and thorium-234 means that, in that time, half of the original uranium atoms
will decay to thorium. Correspondingly, 3.82 days (D) between radon-222 and
polonium-218 means that, in that time, half of the original radon atoms will
decay to polonium. The horizontal connecting line indicates that this decay
will result in alpha particle (ray) emission. Inclined lines indicate the
emission of a beta particle (ray). Those isotopes which are surrounded bv

heavy lines are significant gamma-ray emitters and are therefore very
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important contributors to the natural radiation background (Th-234, U-235,
Ac-228, Pb-214, Pb-212, Bi-214, Pb-212, T1-208, and K-40),.

Talbe
Gamma Radiation .?{};‘
e,
:'.*::_\
7. Gamma rays are quanta of energy which are very similar to x-rays in L:(:,
their velocity and nature. However, whereas x-rays originate in the electron qr? -
LI

shells of the atoms, gamma ravs emanate from the nucleus. Gamma rays have the - -
highest energy level of the radioactive decay emissions, can penetrate rock - ;?
thicknesses of more than a foot, and can travel thousands of feet through air :}'Hi

if the source is sufficiently concentrated and of significant mass. Figure 2
is a typical gamma ray spectrogram for the decay series of thorium, uranium,

and potassium. Gamma ray detection systems which discriminate between radio-

isotopes of the three decay series on the basis of the threshold peaks (shown

in Figure 2) are frequently employed in the exploration of uranium and mineral s,J:\'
AN
resources, geological mapping, in the characterization and documentation of %}ﬁ;%:
%N
NS I
the terrestrial gamma radiation environment, and in evaluating the impact of NN
PGS
nuclear industries on the environment. These detection systems also integrate ;Qﬁif
the gamma radiation to give a "total count". However, counters of this type 1\;1(,
should not be used to quantitatively estimate the activity of alpha and beta iiiﬁi
AL,
particles because alpha and beta emissions have much lower energy levels and R
.-_‘{-_:.~
often do not penetrate into the counting chamber(s) of the gamma ray AL
. °
instruments, -:/:i:
By defining the International Commission on Radiological Pro- ;ﬂiu:3
tection (ICKRP) standard in terms of the dominant hazard, radon EAENTN
daughters, a certain amount of radiation exposure is accounted ;ufuiu
for automatically in terms of radiation dosages to underground NN
workers, However, in some high~grade uranium deposits, the ®
dominant hazard may be external exposure to gamma radiation. %\»frf
Since tnis radiation irradiates the entire body whole bodv jn’nf
limits must be used in terms of 1CRP standards. el
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8. The horizontal lines connecting adjacent blocks in Figure ! {ndicate

LA

P
2%a%n

that the decav is by emission of an alpha particle. Alpha particles are com-
posed of two protons and two neutrons. As they are expelled from the nucleus

they rapidly strip electrons and are neutralized. When electricallv stable,
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alpha particles become helium atoms. Because of their affinity for electrons Ei.
alpha particles do not travel far and can be attenuated by thin layers of 3::
solid materials (e.g. a few sheets of paper). Despite the rapid attenuation i:
of alpha radiation over short distances, the fact that radon is a gas and can E::
be inhaled poses a health hazard (especially if dosages are excessive) ?ﬁ{
because, in this case, the alpha ray attenuation will take place in the tis- ﬁ;d

sues of the lung.

e
RN

T
PR R

NS

Beta Radiation

e
9. Beta particles are equivalent to electrons and are produced by the ;t
decay of a neutron into a proton and a beta particle. Beta particles have no ?i
mass and exhibit relatively low energy levels. Beta particles can travel fur- 5::
ther and faster than alpha particles but like alpha particles are rapidly ::if
attenuated by a thin layer of solid material. Because of this alpha and beta ii
particles are often referred to as "soft radiation". %
Radon Precursors ;;ﬁ
.
10. As is indicated in Figure 1, both radon-222 and radon-220 (Thoron) ﬁ(:
are alpha emitters. As the decay series makes clear, radon should not con- iﬂ:
sidered without reference to the elements before it in the series. Of par- E;:
ticular importance is radium-226 and radium-224. It must always be remembered o
that the distribution of radon in natural materials, rocks, soils, and waters, iiii
“

is related to, and reflective of, the distribution of radium. In some cases -:;

radium distribution may be reflective of the original uranium and/or thorium

distribution but this is not always the case, especially in surface and near
surface environments where parent - daughter isotope separations are common.
The nature and extent of such separations in deep crystalline rock settings is
a matter of some conjecture. However, results from deep drilling programs in
the Granite Mountains (Wyoming), and, more recently, geothermal investiga-
tions, indicate that fluid transport and the leaching of metals (including

uranium) along avenues of enhanced porosity and permeability occur widely and

suggest that uranium - radium separation is probably more common than previ-

ously thought.
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RADON EMANATION
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Background
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11, The phenomenon of radon escape from radioactive minerals was

o o
[
* LS

described in the early part of this century by Boltwood (1905, 1907, 1908) in

Vaesvass

v

his study of the origin of radium. He introduced the term "emanating power"

o
r

b

to describe the loss of emanation from radioactive minerals although the radi-

=

"y

"}:’I‘n

P

[y
Pl

onuclide radon was not recognized as such in these early works. Modern liter-

Ay
<,
y
£,

ature pertaining to radon emanation and escape mechanisms includes the work by

e a”
'S

P. M. Barretto (1971) which is contained in his M.A. thesis, '"Radon-222 Emana-

*

.

AN

TEAN Y

4

- rr
s

tion from Rocks, Soils and Lunar Dust', (Rice University). Barretto's work is

Y
24

also summarized in "Development of Remote Methods for Obtaining Soil Informa-

o
LN

FAL

tion and Location of Construction Materials Using Gamma Ray Signatures for

Project THEMIS". This five volume series of reports was completed in the per-
iod 1970 - 1972 by the Department cf Geology, Rice University, under the

direction of Dr. J. A. S. Adams, et al. for the USAE Waterways Experiment Sta-
tion (WES) under Contract No. DACA 39-69-C-0048. Most of what follows regard-

ing radon emanation and escape mechanisms, including Tables 1, 2, 3 and

R
elale

Figures 3 - 7, was compiled from their reports. *

12. Barretto (1971) notes that although literature treating radon ema-

[ A AL

nation and loss from radioactive minerals (particularly those rich in uranium)
is relatively extensive, until the development of highly sensitive alpha-
scintillators combined with photomultiplier techniques, the emanation data on
common rocks and soils were very few. As is indicated in the data contained

in the aforementioned Tables and Figures this situation has changed consider-

ably over the past two decades.

Radon Emanation

&l

13, For every atom of radon produced there are two alpha-emitting

:
‘o

hY

L]
& A

daughters produced a short time thereafter (equilibrium is attained within

P
NS

F Ay "1'4 .

four hours). Thus, radon emanation and escape 1n soils and rocks can be

LALSNA

determined relatively quickly in properly equipped laboratories using cores

i
A
%

':-.' 40

'

. -,'\

* Notations for these tables and figures are shown in Appendix A.
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and other soil and rock samples. Radon escape has been detected from almost

all rocks and soils including those with very low parent uranfum or thorium

contents (e.g. basalts, gabbros, and even ultramafics).
14, The 3.82 day half-life of radon-222 produced from radium-226 in

XL
e 109
hx

b

N

rocks is sufficiently long that extensive radon migration of radon gas can

o2
N

occur provided the radon can escape from its production site. How radon

o2

escape rates through earth materials vary for different lithologies and soils

-
PR
o a
" &

»

and what the escape mechanisms are for the escape of radon from its production

A

site are important questions for those interested in determining the natural

LAY AN
LA

»
YRR
PR R

radiation environment and its temporal variation. It is pertinent to note

g
A

N "
Ly
- \S .v

that, along with preferential leaching of U-238, U-234 (Thurber 1962, Rosholt
et al. 1963, Doe and Newell 1965), or Ra-226 (in chloride and carbonate

{.'(s(\r .
). C

charged waters) and the precipitation of Th-230 and Ra-226 by sulfate bearing

% %
»

LY

« 2
[N

waters, radon emanation constitutes one of the major causes of disequilibrium

' ®
ol &

i
)

in the uranium series.
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15. In the surface and shallow subsurface, mechanisms which control

%

radon soil gas migration include "pumping" by variations in atmospheric pres-

"
¥

.'1%;'.-";'/‘.12-
&

o]
.

sure, wind, temperature, and moisture. In deeper geological environments

BT N

(where radon is assumed to be dissolved in formation waters) the mechanisms of

)

[
g

radon transport (and the migration of its precursor isotope, radium) are more

' g
a
P
TR

t.‘v

speculative. Rapid groundwater flow along structural avenues (perhaps influ-

% 4 %
¢ 1"

enced by convection), as well as transport by the sweeping effect of other

" SNNN

gases (C02, CHA’ HZS) which migrate in the subsurface, are mechanisms that

have been proposed to explain radon anomalies over deeply buried sources; but

BT A

clearly more research is need in this area particularly on a site specific

s

P M) :"'fif

level.

’
-
g

16. Although the mechanisms are not well understood, laboratory and

27
&

field evidence suggests that radon can migrate at rates well above those pre-

L Xy
o
l"

‘e

dicted by its low diffusivity in solid rock below the water table. As
described in detail below (Diffusion of Radon through Solid Rock) radon con-

.K
by

2,

rad
27

centrations above atmospheric levels have been measured in such protected

e

R

places as low level radiation counting facilitles, sited below ground level,

-

and constructed with heavy wall of low activity concrete!
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Radon Emanation Characteristics
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17. The physical characteristics of Ra-222 emanation, as determined by
the extensive laboratory studies of Barretto (1971) and Adams et al. (1970 -
72), are summarized in Tables 1, 2, and 3 and are shown graphicallyv in Fig-
ures 3, 4, and 5. From these data we can draw the following general
conclusions:

a. Rocks are generally poor radon emanators (relative to soils and
some minerals) with the exception of granitoids which can exper-
ience radon loss of more than 10 percent.

P W

o

Basic igneous rocks (basalts., gabbhros, serpentinites) and some
sedimentaryv rocks (quartzose sandstones, orthoquartzites, lime-
stones) have very low emanations. The low emanations are caused
by low parent element concentrations.

-
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c. Radon release from sedimentarv rocks ranges widelv, however, if
combined, the total far exceeds that for the total igneous rock
radon release into the atmosphere. As is illustrated in Fig-
ures 3 and 4, conglomerates dominate radon escape activity.
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e
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Soils (Table 2) display a broad range in emanation rates and
radon loss but escape-~to-production ratios are generally sig-
nificantly higher than those experienced bv most rocks and
minerals, The wide variation may be caused by the substantial
range of physical state and mineralogv shown by soils.

] e

. .
“

B

$"..‘ ',' ..'. ° ._'..' .
A
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e. Results from weathered samples (E-827 and INK-CG in Table 1)
indicate that weathering is an important factor in increasing
radon emanation. In this case the increase in radon emanation
is probably a function of enhanced effective porosity which
results from the breakdown of rock matrix and mineral degrada-
tion during weathering.
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N
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f. Although some common accessory minerals (Table 3) have high

- uranium concentrations and consequently high emanation rates
their escape-to-production percentages are low both in value
and range. These results show that the percentage of radon
which escapes from a mineral is not necessarily correlated at
all with the uranium concentration. It is believed that radon
escape is more largely dependent upon the stability of the min-
eral structure and its crystallinity.

Y

Radon Emanation and Temperature 0.

NN

18. The influence of temperature on the rate of radon emanation was :izj;

investigated in experiments conducted by Barretto (1971), and others of the :2:2;
Department of Geology at Rice University on samples from the Graniteville _Q

Granite. Their results are illustrated in Figure 6 and show that for Et::
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temperatures in the range 25 - 265 degrees (C) only a slight increase in the

percentage of radon escape is observed. At low temperatures radon release is

drastically reduced; by 13.5 percent at -20 degrees (C) and by 70 percent at

L
N ~80 degrees (C). These results agree with Barretto's (1971) work on radon :”H:;
[ Ca & &
behavior at low temperatures using highly emanating soil samples. fC::$
B }:f:a
Lt
Diffusion of Radon through Granitoid Rock .9
’ AN
' 19. As has been previously indicated, the rate of radon migration iij;
through rocks has been observed to be higher than that predicted by its low f;;&
B S WK
diffusivity. Guedalia et al. (1970) studied radon diffusion in soils and pro- L
: duced a laboratory model which predicted a radon mobilization of Radon-222 ﬁu:;
(half-life 3.825 days) of 360-420 m. Barretto (1971) considered this depth Lo
AN
"unrealistically large'; and then proceeded to produce experimental results AN
A
(using crystalline rocks) which told much the same story and left him at a [ )
loss to understand what appears to be a rapid radon mobilization mechanism ':%-
operating in granites. The following excerpt is from Barretto's (1971) 4
observations and his published results on radon diffusion experiments which
used granite cores from the Conway Granite batholith (New Hampshire).
3 "Although these experimental observations indicate rapid dif-
: fusion of radon through substantial thicknesses of solid
3 fresh granite, it 1s difficult to understand the mechanism
especially considering the accepted low permeability of gran-
ite and absence of pressure changes. Previous reports of
this are not found in the literature. It is interesting, how- ,:5;

A ever, to recall that radon concentrations above atmospheric
levels have been found in such protected places as low level
radiation counting facilities, below ground level, which usu-
ally are constructed with heavy walls of low activity con-
crete. In these cases, the radon migration into the under-
ground facilities has been attributed to the presence of -
fractures in the concrete, even if they are not apparent. NS
Due to the lack of independent data which would or would not RO
support the above laboratory observations, the interpreta- -
tions or derived consequences will not be discussed further.

The diffusion of helium through glass is well known and used NN
industrially. By analogy, the radon results may indicate :.2, .
: that although granite and glass are generally impermeable to R
; most fluids, the glass has spaces that permit the ready o
diffusion of helium and the granite may have spaces that RN
allow the radon to diffuse rather rapidly (see for example '}:':

Brace et al., 1972)." e
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S 20. As part of "Granite Resurgence of Water lLevel” (GROWL) LeGrand RN

S
. PR

. (1986) developed a hydrogeological framework hosting radon emissions from A

i g NN
indoor air, as well as radon and radium emissions from well water, to provide 9

CY Y "- s

:ﬁ a conceptual model to account for high concentrations of these isotopes under NN

- - f-.'

> certain water conditions in fractured crystalline rocks. In this model the X
" -

Y. required conditions for accretion of radon and radium twhich can then dislodge S::
. and enter tightly insulated habitations or well water) are (1), granite with e
:: normal (2-4 ppm) or above normal amounts of uranium; (2), an interconnecting .

:f fracture pattern; (3), a mantle of relatively impermeable material over the
<.

-, granite; and (4), repeated cycles of a fluctuating water table in the fracture

zone. In this model, as radium and radon are mobilized by the fluctuating
£ water table and by variations in atmospheric pressure which produce a "pump-

Y
s ing" effect. It is effectively trapped by the impermeable zone where it

[

'] accretes. This entrapment results in a slight pressure flow to least resis~-

i tant outlets in the vicinity.

:? (Author's Note: The above model of radon transport mechanism
\j may be useful in explaining the accumulation of anomalous

o~ radon gas in "sealed" underground excavations. Almost all
o2 such facilities usually have some sort of "least resistant"

outlet or inlet as an integral part of their structure.)
Al

4 21. Radon anomalies over sources at significant depths in sedimentary

v,

ﬁ rock sequences are also documented in the literature. Strong (2 - 3 times

y background radon anomalies have been recorded over Starks Salt Dome in Cal-

) casieu Parish (Louisiana) where the depth to cap rock is in excess of
,-

. 1200 feet (370 meters) and to salt 1925 feet (589 meters). These anomalies
s
:- are apparently controlled by marginal ring and interior radial faults; struc-

2 tures which enable ground water movement and barometric changes (as well, as, :;{:

perhaps, the "sweeping'" effect of the migration of other gases) to mobilize ‘%

», )
’: radium and radon from these depths, (Gabelman, 1972), A similar situation :f:f
AN .:h“'\

- prevails over the Chacahoula Salt Dome in lafourche Parish where the depth to }}:;
1N S )
': cap rock is 932 feet (285 meters) and to salt 1367 feet (418 meters). In :r:n

other cases structural controls to enhance the mobilization of radium and o
. - -r' -

o radon from substantial depths are not evident. Gingrich (1975) reports radon ::{:|
- A
'5 anomalies over a relatively low-grade uranium deposit in the “rants Mineral ;:::.
o Belt (New Mexico) which is at a depth of 360 feet and overlain bv a Dakota }:::f

B AT
(Cretaceous) sandstone sequence which contains interbedded shale stringers and j!_
7, A
.
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a thin coal seam. In this case the presumed source, the uranium deposit, is
located above the water table.

22. In summary, it can be stated on the basis of laboratory evidence
and field measurements made during uranium exploration programs that the
mobilization of radon and its precursor isotope, radium, is often more exten-
sive than originally predicted by earlier studies albeit that the mechanisms

of such mobilizations are, as yet, incompletely understood.

MECHANISMS OF ESCAPF OF RADON FROM PRODUCTION SITES

Backgrounq

23. The escape of raden from radioactive minerals was noted by Boltwood
(1905, 1907, 1908) in his study of the origin of radium. He also noted that
the "emanating power' of a mineral was considerably reduced by heating. Lind
and Whittemore (1914), found "emanating powers' in the range 16 - 50 percent
when thev investigated the radium - uranium ratio in the mineral carnotite.
Holmes (1948) was the first to relate radon emanation to discordance in the
uranium ~ lead system, an observation which held the interest of geochronolo-
gists for over a decade (Giletti and Kulp, !954; Kulp et al. 1954; Horne and
Davison, 1955; Eckelman and Kulp, 1956) until they concluded that radon leak-
age played an insignificant role in explaining the isotopic ages of the sam-
ples they analyzed. Instead lead loss events, which are more suitable to
detection and are the major effects in the uranium-lead system discordance,
became emphasized; and the radon emanation mechanism relegated to much lower
importance in geochronological research (Barretto, 1971). Fortunately,
research (in the United States) by Gereral Electric Laboratories and Rice
University Department of Geologv during the period 1960 - 1975 produced impor-

tant findings and a new understanding in radon escape mechanisms.

Escape Mechanisms - Radiation Damage in Minerals

24, Radiation damage to mineral crystal lattices produced by spontan-
eous fission fragments, alpha particles, and recoil nuclei provides the means
of radon escape (Barretto, 1971), It is important to note that micas and

other potassium minerals are the sites of production of radiogenic argon and

24
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xenon. These lighter, noble gases do not escape from their production sites
and for this reason are useful in geochronological studies. Yet radon does
escape and mechanisms other than the one outlined above (thermal diffusion,
leaching, diffusion through microfissures) fail to account for the observed
radon loss In laboratory experiments. Barretto (op. cit.) and Fleisher et al.
(1964, 1965, 1966) describe the following important aspects of radiation
damage in minerals as well as the radon escape mechanism:

a. Part of the radiation damage in radioactive minerals or in min-
erals which host radiocactive elements, that produced by fission
tracks, can be observed under a microscope after the damaged
portions of the mineral structure are selectively etched by
chemical treatment.

b. The fission tracks are randomly oriented, frequently intersect
one another, and their density or numbers per unit volume varies
according to uranium distribution in the mineral.

c. Much more abundant are radiation damage effects due to alpha-
particles and recoil nuclei. These are more difficult to
observe directly however, because of their smaller size, and
hence more difficult to evaluate.

d. If there is no radium-226 leaching then the radon production
site must be at or very near the uranium lattice site. The
radon generated is dislocated from its production site bv the
nuclear recoil energy (4.78 MeV for the alpha-particle and
90 KeV for the Radon-222 atom). Because manv other alpha dis-
integrations took place in the uranium decay chain before reach-
ing radon-222 (see Figure 1) this region of the crystal must be
highly damaged. A fraction of the radon moved by the recoil can
diffuse to the grain surface by utilizing all possible pathwavs
connected to the damaged zone.

The particular emanation rate of a mineral will be a function
of several independent variables including concentration of
radioactive elements, age, and crystal structure. Also the
site of this radioactivity, whether inside or outside the lat-
tice, in solid solution, occlusion or inclusion, or fracture
filling, is important as it will control the distribution and
pattern of the radiation damage.

|

f. Radon leakage from a mineral starts at a low baseline Jevel and
" will increase with time as the crystal undergoes damage from the
decay of uranium and/or thorium and their daughters. Radon
escape should theoretically reach a maximum when the mineral

crystal structure is completely destroyed.

g. All minerals do not respond in the same manner to radiation
damage. For example, zircon inclusions in feldspars fail to
show the pleochroic haloes so common when zircon is hosted in
biotite; suggesting an equilibrium between damage rate and
recovery which varies between mineral species. Some minerals

25
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. structures(s) are readily damaged by low alpha-dosages while -
. others fail to show any detectable effect.

| S
24K

h. Thorite, phyrochlore, euxenite, and zircon (all of which are

g, relatively abundant in some granitoid terranes) are examples of 85-
a:. uranium rich minerals in which varying degrees of metamictaza- {&
Yy tion (an advanced stage of radiation damage) have been found. :ﬁ\
a: However, autenite, metatorbenite, sphene, and xenotime are :}:'
‘;\ reported as not being subject to metamictization despite their qh,
high uranium concentrations. —a
: .
ol 1. Temperature plays the most important role in annealing the \f:
::f radiation damage to mineral crystal structure. :,:
0 f«j-.
", S -
X x
: Temperature Annealing Effects on Radon Escape :'
& W
/ AN
> B . » 1, { u
A 25, Barretto (197!) and Fleisher et al. (1965) conducted extensive o
e >
< . . : - A
:, experiments on the annealing effects of temperature, pressure, healing time, 5:\.
" Ly
- plastic deformation, and ionizing radiation. There is little doubt that ;ﬂ
. temperature plays a dominant role in annealing radiation damage in crvstals, g
Jj- Figure 7 illustrates the variation of radon loss with temperature increase for
. “.
e various mineral species and for granite. Radon loss is not significant below
? ".,

100 degrees (C) but, for granite, becomes important in the range 100 -
g 600 degrees (C).

:{: RADTOMETRIC ANOMALIES AND THEIR CAUSES 2

. »
N Background S
o
.'.'- o
ff: 26. The potential increase in demand for fissionable elements to fuel C::
% nuclear reactors sparked intensive, if sporadic, uranium exploration activi- ;"
L~ ties during the 1950-1980 period. These activities resulted in extensive 1lit- 'E;
N A
- erature which deals with radiometric anomalies and their causes. Allied ':s
- R
ﬁﬁ literature treating methods of radiometric data analysis and anomaly discrimi- -~
o nation and interpretation are equally voluminous. It is beyond the scope of ;*'
: this report to discuss radiometric anomalies in other than outline form. The Efi
- RO
i?. interested reader is referred to the extensive bibliographies published by the o
:Q US Department of Energy and The International Atomic Energv Commission for :x’
B more comprehensive treatment of this subject. o
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27. 1t is useful to define "radiometric anomaly" or "anomalous radio-

activity'". An enormous amount of time, energv, and money has been spent in
attempting tc establish what is meant by these terms bv those in resource
estimation, exploration and development, as well as by those involved with
safeguarding health and the environment; and interpretations varv somewhat.
"Anomalous radicactivity" is defined herein as a significant deviation from
uniformity and regularitv in radiometric quantities measured bv the techniques
and instrumentation developed to date. As such, radiometric anomalies are
caused bv the natural accumulation of decav series radioisotopes in quarntities
measurablv above statistical background which are established bv detailed sur-

vevs of the natural radiation background in the area or region of interest.

Radon Migration

28, Radon will migrate bv both diffusicen and transport in a fluid media
(air or water). However, diffusion of radon-222 in a water-saturated porous
media such as that pertaining in most subsurface geological environments is so
small that diffusion alone cannot account for the radon anomalies which have
been observed in the field. Clearly, a transport mechanism is responsible for
the radon associated with most anomalies.

29. Several mechanisms have been observed to operate depending on
whether the radioactive source is situated above or bhelow the water table
(e.g. atmospheric pumping, convection, sweep bv other gases, high rates of
fluid flow in faults and other structural avenues, and combinations of all of
these).

30, Dispersion of, (for example), uranium and its radium daughter pro-
duct from a deeper source can result in radium concentrations at the water
table. This in turn results in an upward diffusion (or other transport) of
radioactive soil gas (radon) which can reach the surface and be detected by
both gamma-ray scintillometry and alpha-ray detection systems. (The amount of
soil gas present on a given day is very much a function of atmospheric pres-
sure; hence the use of the passive detection systems (e.g. alpha-cup detec-
tors) which remain in place for a month or so and '"mean-out" the atmospheric

effect.)
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31. It should be noted that mobilization and transportaticn of radon ﬁ:ﬁ:}
NS
and its precursors at depths significantly below the water table is still, ;ﬁ'\’
AT
poorly understood. [ ]
SO
o
Common Causes of Radiometric Anomalies ':“:’{
:x::-.'-.
S
faas
32, The following phenomena commonly act to produce radiometric _
anomalies: gi;f;ﬂ
RSN
a. Structural avenues of groundwater movement. Structural avenues {C}'\
of fluid migration such as faults, fracture zones, and regional ;xéf:
joint sets, have long been noted for their often anomalous ISR
radiometric signatures. Recalling that raden has a very short ®
half-life and that its diffusion rates are low, and that fluid AN
-_'f '-- ",

flow rates typically range from 1.5 meters/day to 1.5 meters/

, &

vear in most geologic media, it is difficult to explain many

radiometric anomalies which have their source at substantial e ;
depths. In some cases structural controls, perhaps aided by %f:{{{
"sweep" of other gases (COZ’ H.S, CH,, etc.) must enable ground- o
water flow and barometric pressure to mobilize radium and radon v
from great depths. In other cases structural controls to sup- OO
port the mobilization of radioactive isotopes from substantial Lj{jﬁ}
depths are not evident, :i:jtj
b. The role of groundwater geochemistry. The solubility of Sende]
uranium (and the important radon precursor radium) is covariant ;..;!,-
with salinity. Studies which treat geothermal systems and {i\iq:
hydrothermal minerals deposits suggest that convective trans- :,:,:e
port of groundwater at depth in some crystalline terranes can a;\ﬂq:
vield a hydrothermal fluid with high salinity and acidity; :r ;f
particularly in areas of anomalously high heat flow. As salin- AN
ity and acidity of the fluid increases so does its capacity to -‘}SZ‘
leach metals from the country rock. The result, as indicated rtﬂ:}\
in studies of geothermal systems and fluid inclusion investi- :\:\js’
gations, is a brine. The degree to which the fluid is enriched ::::i:
in a particular metal is dependent on the abundance of the ;:“:2:
L A )

metal in the rock, and the geochemical factors which control
rock-water interaction and its rate.

The above mechanism has been proposed to account for some
hydrothermal mineral deposits in granitic terranes including
uranium and thorium accumulations in veins and disseminations,
This mechanism also accounts for anomalous amounts of radium and
radon in some geothermal svstems and hot springs. Again, struc-
tural features such as faults and fractures offer the optimum
avenues of fluid migration in crystalline terranes.

c. Anomalous (including economic) concentrations of uranium and
thorium. Parent elements can concentrate in anomalous amounts
through a variety of well-recognized processes in sedimentaryv
and crystalline rock settings. For example, some continental
sediments host a tuffaceous volcanic and/or a siliceous
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volcano-clastic component. Leaching of this component will
enrich groundwater in uranium. Transported in groundwater as
uranyl-dicarbonate, uranium may precipitate in reducing envi-
ronments produced by: the metabolic activities of anaerobic
bacteria feeding on organic debris in the sediments, carbonac-
eous debris or humic acid accumulations, the introduction of
hydrogen sulfide gas associated with hydrocarbons at depth, and
related phenomena which result in oxidation - reduction reac-
tions along chemical fronts, These processes have acted to
produce economic concentrations of uranium in continental sand-
stones in many parts of the world.

Other anomalous accumulations of uranium and thorium min-
erals in sedimentary rocks include the radioactive placer
deposits hosted in Lower Proterozoic conglomerates in Canada,
South Africa, and Brazil. Anomalous uranium concentrations in
the calcretes of some arid terrains are not uncommon.

In younger settings thorium and uranyl-thorium mineral
accumulations can occur when thorium-rich heavy minerals form
part of the sediment load in fluvial and nearshore marine depo-
sitional environments. Thorium-rich placer deposits are often
the result. These produce total radiometric anomalies similar
to those sourced by uranium concentrations. As is always the
case when both uranium and thorium occur together, anomaly dis-
crimination must be accomplished by spectral analvsis or, if the
thorium source material is right on the surface, by chemical
methods. Modern gamma-ray spectrometers can usually resolve the
ambiguity inherent in anomalies with a significant thoron
contribution.

Uranium and thorium are lithophile elements and have an
affinity for acidic igneous rocks, particularly granites and
their extrusive equivalents. Those portions of granitic intru-
sions which have undergone '"wet' hydrothermalism and the crys-
tallization of pegmatitic differentiates are often enriched in
uranium and thorium minerals. Uranium and thorium can concen-
trate to economic grades in such phases (e.g. Bancroft District,
Canada; Rossing, Southwest Africa). Pegmatitic terranes are
thus an obvious source of anomalous radium and radon.

Lithologic variations. The physical and chemical processes

involved in the formation and later alteration of a given rock
unit often involves the enrichment of parent and daughter iso-
topes with the results that the radiometric signature of the
unit contrasts sharply with that of adjacent units. For exam-
ple, the Chattanooga Shale Formation carries an anomalously
high uranium background, as do many acidic plutonic and extru-
sive igneous rocks (and their metamorphic equivalents). Lime-
stones generally have very low levels of radioactivitv. The
list of potential variations in radiocactivity among rock tvpes
is extensive (see Figures 3 and 4). Fortunately these varia-
tions tend to have regional implications, and can usually be
defined as background vartations rather than local anomalies,
particularly during follow-up survevs.
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Temporal Variations in the Natural Radiation Environment

Surface variations

33, Temporal variations in the natural radiation environment (as mea-
sured on the earth's surface or in the atmosphere) are caused by variations in
temperature, barometric pressure (which can produce a pumping effect), wind,
moisture, and variations in the regional or local water table. These
variations can take place over periods which range from hours to months and,
in the case of water table variation, even years. More importantly, radon
concentrations can vary by as much as a factor of 100 in a 24 hour period,
Consequently, short term measurements of soil gas such as those done by tradi-
tional emanometer techniques are usually not reflective of average radon cor-
centrations in a given area. However, a considerable amount of experimental
evidence suggest that most temporal variations in radiometric background
"mean-out' over a period of 21-30 days.

34. Because of the variability of weather conditions emanometer read-
ings are usually not repeatable and the use of passive alpha-detectors for
radon activity measurement is now generally recommended. By leaving the
detector cups buried in shallow excavations for periods in excess of one month
the detectors continuously accumulate the readings produced by varving radon
soil gas concentrations and thus produce a reading indicative o! long term
average.

Subsurface variations

35, Variations in radon activitv at depths significantly below the
water table should be less and occur over a longer period of time than those
in the shallow subsurface. Deep geological settings are generally water
saturated except in those environments where liquid or gaseous hvdrocarbon
fluids are present or in areas of pronounced geothermal activityv where boiling
of fluids is possible and rapid vapor-liquid phase changes are likelv. In
deep water-saturated settings the parameters which so drastically aftfect radon
gas variation in the near-surface environment (changes in barometric pressure,
temperature, moisture, and wind) have minimal effect and variations should be
minimal. However, other factors ‘mentioned earlier) which control the mobili-
zation and transportation of radon and its precursors may be impacted bv the
deep excavation and construction of large underground facilities. Continual

monitoring of the background radfation in and near the facility site during
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site characterization, construction, and facility occupation is indicated on
the basis of present knowledge and understanding of the subsurface natural
radiation ervironment.

ENVIRONMENTAL PROTECTION AND HEAT.TH HAZARDS

Radiation Environments

36. The concentration ot airborne radioactivity can become high in the
confined spaces of anv underground excavation which encounters anomalous accum-
ulations of radicactive minerals and/or daughter products of the ratural uran-
ium and thorium decav series. Epidemeological studies of conducted over the
past three decades bv the P'ublic Health Service in the United States have
indicated that uranium miners have a higher incidence of lung cancer than the
general population, These studies have also indicated that the radiation dose
from the daughter products of Radon 222 (218 Po, .14 Pb, 214 Bi, 214 Po), as
one of the causes of lung cancer. However, the amount of radiaticn dose
delivered to the lungs by inhaled radon is uncertain because the dose depends
on manv factors, such as the dustiness of the air in the excavation, the
length ot time the air has been in circulation, the breathing rate, mucus in
the bronchial passages, and the phvsiology of the bronchial passages as
affected bv smoking or infection. The amount of radon entering an excavation
is determined bv the rate of emanation into the mine, the rate of removal by
ventilation, and the radioactive decay of the gas.

37. Although the above concerns are legitimate levels of radon accumu-
iatifon in deep excavations of interest to the CE should be orders of magnitude
less than those experienced in most uranium ore mines or mines where uranium
is recovered as a bv-product, The grades of such uranium ores are often 1in
the range 250 - 4000 ppm or greater. Deep excavations sited in granite would
most likelv experience radon accumulations sourced from uranium and thorium in
the 3-100 ppm range; 1.e. a relativelv low-level radiation environment. What
must be dealt with during site characterization is (1), the possibilitv that
an anomalously high radon source could be encountered (e.g. a portion of the
excavation where background uranium and thorium - and hence radon emanation -

increases hv a factor of tive or ten or more), and (.), the health effects of
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long term exposure to such a source particularly if the excavation is a sealed
system and the ventilation system is not recirculating air to the atmosphere.
38, It is also pertinent to note that a significant number of scien-
tists feel that far too little 1s known about the long term health and genetic
effects of prolonged exposure to low-level radiation enviromments. Radon has
been highlighted as an important actor in the low level radiation environment
and the mechanisms of its mobilization and concentration are still poorly
understood in deep geological environments. There has occurred recently a
proliferation of meetings, conferences, and studies, dedicated to radon and
its concentration in human habitations and dwellings of all sorts as well as

its impact on health safety.

Radon Detection and Monitoring Systems

39, All svstems of radon detection and monitoring are based on the
detection of alpha-particles emitted during the decay of radon and its daugh-
ters. The methods used to detect and measure alpha particles are (1) the gold
leaf electroscope which is now obsolete and of historical interest only;

(2), the zinc sulfide scintillator; (3), the iorization chamber; (4), the
alpha-track method which {s an excellent passive svstem to determine alpha
background and (5), silicon detectors which employ solid state circuitry to
record data continuously.

40, The alpha-track method is an excellent passive system for the
determining the alpha background activity (and anomalies in background) in
geological environments and can discriminate between radon and thoron. Alpha
sensitive photographic film record the passage of alpha particles along their
trajectory as tiny tracks. These tracks can be made visible (microscopically)
either photographicallv or by a method developed by General LKlectric Co. using
cellulose nitrate film which is sensitive to alpha particles but not to light,
This method has wide application in the exploration industryv, fault and cavity
detection studies, earthquake prediction studies, geothermal investigations,
and in some environmental monitoring exercises. Alpha particle activity is
measured over minimal three-week periods to allow for statistical variations
in background caused bv atmospheric, wind, and temperature effects to be
"meaned-out". The alpha-track method is marketed under the trade name "Track-

Etch"” by Terradex Corporation (an affiliate of Tech/Ops, Inc.). A similar
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system (AlphaCARD) is marketed by AlphaNuclear, a Canadian company who also
markets AlphaDOSIMETER and AlphaLOGGER both of which have application in
exploration surveys when soil gas radon surveys are desired.

41. The AlphaDOSIMETER system uses solid state silicon detectors, ampl-
ifier, and microprocessor to record and store alpha particle activity. Its
major application is in underground mines or excavations where personal or
environmental measurements are desirable. Exposure 1s available on a daily
basis so that remedial or corrective measures can be taken promptly to mini-
mize personal exposure. Computer storage enables health and radiation person-
nel, ventilation engineers, etc., to further treat the data statistically; to

establish trends and to optimize ventilation and minimize radiation exposure.

RESEARCH DIRECTIONS

42, This study identified several areas of radon behavior research
which would benefit site location, characterization, construction and opera-
tion of deep underground facilities. The nature of this research is such that
several of the topics listed below could be combined as a single research
project.

a. The geochemical behavior of radon precursors in relation to
groundwater geochemistry and physical controls of radon anoma-
lies in the natural environment.

b. Mechanisms of radon mobilization and how they vary according to
specific geological environments.

c. The extent of radon mobilization with depth by atmospheric
"pumping" and convection mechanisms.

d. The extent of radon mobilization by the "sweeping" effect of
other gases.

e. Continued support of instrumentation for better detection and
monitoring of the natural radiation environment. There is a
need for scintillation equipment not subject to contamination
and with a low sensitivity to normal light.

43, The effect of ionizing radiation produced by radon on the sub-
strates of sophisticated semi-conductors is an open question at this time,

(pers. comm. Dr. H. W. Alter, Terradex Corporation). It would be useful to

know exactly what information has been gained regarding this aspect of radon

decay bv such research establishments as Bell Laboratories, The National
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Testing Laboratory, International business Machine (IBM), other private sector
entities, and the research facilities of the Department of Defense.

44, 1Tt is recommended that a research review be conducted to ascertain
the state of knowledge and the experimental evidence treating tla effect of
ionizing radiation produced by radon decay on sophisticated electronic firm-
wave circuitries, particularly those dedicated to communications and digital

signal analysis.
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. LS
. ]
e NG
\. .-:"--
'b, el: Equivalent uranium content or grade as measured by calibrated gamma ?{:
' 'Q"_
“~ ray spectrometer, scintillometer, or similar detection system. Usu- :ﬂf
Al :~v'
. .Y

ally expressed in parts per million (ppm).

" Ci: Curie; the unit of activity in the field of radiation dosimetry.
A~
15 One curie equals 3.7 x 1010 disintegrations per second. (The activ-
4
' ity of one gram of radon-226 1is slightlv less than 1 curie.
2
o pCi: Pico curie; equal to 10-12 curies. ;f:
- TN
¥ N
222-Rn Activity and Emanation Rate: ~; -
5y o
~ -
~ Barretto (1971) details the laboratory, alpha-counting, mathemati- A
N e
:: cal, and data processing methods and procedures used to determine Ci:‘
both 222-Radon activity and emanation rate. 5
- ®
e e
:3- The amount of alpha particles produced by a radon source material
N
.:: over a set (measurable) period of time, is taken as an indicator of
¢
. radon activity and is given here in units of picocuries/hour/
. -4
-3 gram x 10 .
:T, AN
- e
:« The emanation rate is derived from a differential equation that :}\
~ describes the rate of change of the number of radon and daughter :‘\
fa isotope atoms as a function of time. Emanation rates shown herein 5{?
,{: are given in units of atoms/hour/gram. ACS
5 e
nt ,_._>_.
3 e
Escape-to-Production Ratio (%): S
~ L
~ 23
- o
\:: The escape-to-production ratio (EPR) is given as a percentage of {:f
‘§ radon activity and calculated from the equation: ji;
‘ I’I
L] . ‘o
- EPR = 100 - [(E - a)/A], o
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where E is the emanation rate and A the experimentally derived radon

activity.

US Standard Sieve Mesh Numbers:

The mesh numbers in the Tables and Figures from Barretto (1971)
refer to the US Standard Sieve Mesh Numbers which correspond tc the

tollowing mean grain sizes after sample crushing and sieving:

60 Mesh = 0.250 mm (250 microns)

100 Mesh = 0.149 mm (149 microns)
115 Mesh = 0,129 mm (129 microns)
200 Mesh = 0,074 mm ( 74 microns)
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